Logo Zertifikatsstufe 1

Level: Awareness

Introduction to important aspects about the work with data
Logo Zertifikatsstufe 1
Picture: Volker Schwartze

In the first level of the certificate, you will get an overview of fundamental aspects regarding the work with data. In addition to topics related to the collection, management, analysis and interpretation of data, also legal, ethical and social aspects will be discussed.

The DaLiJe online course (Moodle) introduces you to the Data Literacy competencies and gives you first opportunities to gain experiences with basic tools. You have full flexibility in working through the course, whether during the semester or in a block during the lecture-free period. You can decide. Therefore, registration is also possible after the start of the semester without any problems.

During the semester, we also offer various 90-minute "Hands-on sessions" in which we will present individual topics and tools in more detail.

  • Organisatorisches und Abschluss

    Am Beginn des Semesters gibt es eine Auftaktveranstaltung, in der das Thema Data Literacy und seine Relevanz in unserer Gesellschaft vorgestellt wird. In diesem Rahmen informieren wir auch über den Ablauf des Zertifikatsprogramms und der organisatorischen Details zu den Hands-On-Sessions. Wer die Auftaktveranstaltung verpasst hat, kann sich die Aufzeichnung davon im Onlinekurs anschauen.

    Zum erfolgreichen Abschluss dieser Zertifikatsstufe müssen der Onlinekurs und mindestens 3 der angebotenenen Hands-On-Sessions erfolgreich absolviert werden. Das Zertifikat kann dann per E-Mail formlos beantragt werden: dataliteracy@uni-jena.de

  • Anmeldung

    Studierende der Universität Jena 
    Melden Sie sich einfach über FriedolinExternal link an.

    Interessierte, die nicht an der Universität Jena eingeschrieben sind
    Kontaktieren Sie uns einfach per E-Mail: dataliteracy@uni-jena.de 

    Eine Anmeldung ist jederzeit im Verlauf des Semesters möglich. Beachten Sie aber die Verfügbarkeit vn Terminen für die Hands-On-Sessions, die für den erfolgreichen Abschluss der Zertifikatsstufe relevant sind.

Hands-on Sessions

The hands-on sessions are thematically focused introductions to topics and tools that provide an entry point. No special previous knowledge is required. Thus, the courses are suitable for beginners from all disciplines. "Hands-on" is defined broadly and includes, depending on the topic, sessions with exercise or seminar character.

Each session lasts 90 minutes. The dates will be coordinated with the participants of the certificate program and then published here. You can also participate in individual Hands-On-Session independently of the certificate programme if there are free capacities.

Registration

All participants in the certificate programme do not have to register separately for the hands-on sessions. The registration will be done in the Moodle room.

All other students, please register for the individual sessions in which you are interested via our formExternal link.

Sessions Winter Semester 2024/25

  • Datenethik: Konfliktfelder von Ethik und Informationstechnologie

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:

    Die zunehmende Digitalisierung unserer Gesellschaft stellt nicht nur neue Anforderungen in Bezug auf digitale Kompetenzen, sondern auch neue gesellschaftliche Herausforderungen. Nicht selten gibt es dabei Konflikte zwischen ethischen Aspekten und der Entwicklung bzw. dem Einsatz von Informationstechnologien.

    Im Rahmen der Hands-on Session wollen wir anhand von Beiträgen aus den Gewissensbits Externer Link ethische Konflikte im Bereich digitaler Technologien herausarbeiten und diskutieren. Dabei sollen insbesondere auch die verschiedenen Ebenen und Herausforderungen in Bezug auf mögliche Lösungen solcher Konflikte herausgestellt werden.

  • Daten- und Projektmanagement mit der FSU-Cloud

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:

    Die passende Sicherung von Daten und die Organisation von Projekten sind Herausforderungen, die sich in nahezu allen Arbeits- und Lebensbereichen finden lassen. Das kann im kleinen die eigene Arbeit an Seminar- oder Abschlussarbeiten sein oder auch ein kollaboratives Projekt im Rahmen von Seminaren oder im späteren Job.

    In der Hands-on Session stellen wir Grundlagen des Daten- und Projektmanagements mit der FSU-Cloud (Nextcloud) vor. Die Cloud ist für alle Studierenden an der Universität Jena frei nutzbar und bietet eine Vielzahl von Werkzeugen zur effektiven Ablage und Bearbeitung von Daten. Dabei geht es sowohl um die sichere Verwaltung und Organisation von Dateien als auch spezifische Möglichkeiten zur Arbeit in Projekten (z.B. Seminar- und Abschlussarbeiten, Berichte, Präsentationen). In diesem Zusammenhang werden Funktionen zur gemeinsamen Bearbeitung von Dateien sowie zur effektiven Organisation der Arbeiten im Team vorgestellt (bspw. Aufgaben, Kanban-Boards).

  • Dokumente effizienter formatieren: Einführung in LaTeX

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:

    Die passende Sicherung von Daten und die Organisation von Projekten sind Herausforderungen, die sich in nahezu allen Arbeits- und Lebensbereichen finden lassen. Das kann im kleinen die eigene Arbeit an Seminar- oder Abschlussarbeiten sein oder auch ein kollaboratives Projekt im Rahmen von Seminaren oder im späteren Job.

    In der Hands-on Session stellen wir Grundlagen des Daten- und Projektmanagements mit der FSU-Cloud (Nextcloud) vor. Die Cloud ist für alle Studierenden an der Universität Jena frei nutzbar und bietet eine Vielzahl von Werkzeugen zur effektiven Ablage und Bearbeitung von Daten. Dabei geht es sowohl um die sichere Verwaltung und Organisation von Dateien als auch spezifische Möglichkeiten zur Arbeit in Projekten (z.B. Seminar- und Abschlussarbeiten, Berichte, Präsentationen). In diesem Zusammenhang werden Funktionen zur gemeinsamen Bearbeitung von Dateien sowie zur effektiven Organisation der Arbeiten im Team vorgestellt (bspw. Aufgaben, Kanban-Boards).

  • Einführung in die Auszeichnungssprache Markdown I: Basics und Obsidian

    Datum:
    TBD

    Ort:
    TBD 

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:

    Es gibt viele Möglichkeiten Notizen, Texte und Informationen zu verwalten. Bei persönlichen Notizen können das z.B. handgeschriebene Notizen, Text- oder Worddateien oder spezielle Formate wie One-Note-Dateien sein. Die unterschiedlichen Varianten haben dabei unterschiedliche Limitierungen, wie z.B. Optionen für die Formatierung, unzureichende Möglichkeit für die Zusammenarbeit, die Einbindung von Bildern oder die Notwendigkeit der Anschaffung kostenpflichtiger Software. Gerade wenn es um größere Mengen an Informationen geht, lassen sich diese zudem oft nur schwer gut strukturiert organisieren, wie man es beispielsweise in einem Wiki (wie Wikipedia) könnte.

    Hier kann die Auszeichnungssprache Markdown helfen, die kostenfrei und unabhängig von spezifischer Software verwendet werden kann, um Notizen und Informationen besser zu strukturieren. Die Anwendungsbereiche von Markdown sind dabei sehr weit und schließen besipielsweise auch die Gestaltung von Präsentationen oder Webseiten mit ein.

    In der Hands-On Session zeigen wir grundlegende Funktionen von Markdown, wobei die Teilnehmenden ein eigenes Cheat Sheet ("Spickzettel") mit Befehlen in Markdown schreiben werden. Zudem stellen wir die Software Obsidian vor, die in Verbinung mit grundlegenden Kenntnissen in Markdown das Anlegen eigener strukturierter Informationsspeicher ermöglicht.

     

  • Markdown II: Interaktive Präsentationen mit Markdown und Reveal js

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:

    Mit der Auszeichnungssprache Markdown lassen sich nicht nur Dokumente erstellen, sondern auch Präsentationen. In der Regel sind diese allerdings recht einfach in Bezug auf die Gestaltungsmöglichkeiten. Ansprechende und interaktive Elemente hängen häufig von der Nutzung spezifischer und ggf. kostenpflichtiger Software ab. Dabei kann es schnell zu Kompatibilitätsproblemen oder Fehlern bei der Darstellung kommen.

    In der Hands-on Session stellen wir die Open-Source-Software Reveal.js vor mit der interaktive Präsentationen im Webbrowser erstellt werden können. Mit ihr lassen sich plattformunabhängige Präsentationen mit Übergängen, Animationen und verschiedenen Layouts erstellen. Die Präsentation basieren dabei in weiten Teilen auf der Markdown-Syntax. Die Teilnehmenden erhalten eine Einführung in die Software und lernen, wie sie Markdown und Reveal js eigene Präsentationen entwerfen können. Nach der Session sind sie in der Lage, erste eigene Präsentationen mit Reveal js zu erstellen. Für die Teilnahme sollten Teilnehmende die Grundlagen der Markdown-Syntax beherrschen (z.B. durch die Hands-on Session Markdown I).

  • Einführung in die Programmiersprache R I: Basics

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:

    R ist eine Open-Source-Programmiersprache, die speziell für statistische Berechnungen und Datenvisualisierung entwickelt wurde. Dank ihrer Flexibilität ermöglicht sie es, verschiedenste Datenanalyseprojekte individuell zu gestalten und eigene Lösungen zu entwickeln, was in Forschung und Praxis besonders wertvoll ist.

    Dieser Einführungskurs in R richtet sich an Anfänger, die wenig oder keine Erfahrung mit der Programmiersprache R haben. Die Teilnehmer lernen die Grundlagen der R-Syntax, Datenstrukturen und Kontrollstrukturen sowie das Lesen und Schreiben von Daten in R. Zusätzlich können die Teilnehmer ein fortgeschrittenes Beispiel auswählen, das während des Kurses eingehender betrachtet wird.

    Am Ende des Kurses sollten die Teilnehmer einen Einblick in die R-Programmierung haben und in der Lage sein, einfache Skripte zu schreiben, um Daten zu manipulieren und zu analysieren.

  • Einführung in die Programmiersprache R II: Plotting

    Datum:
    TBD

    Ort:
    TBD 

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:

    R ist eine Open-Source-Programmiersprache, die speziell für statistische Berechnungen und Datenvisualisierung entwickelt wurde. Dank ihrer Flexibilität ermöglicht sie es , verschiedenste Datenanalyseprojekte individuell zu gestalten und eigene Lösungen zu entwickeln, was in Forschung und Praxis besonders wertvoll ist.

    Dieser Einführungskurs in R richtet sich an Anfänger, die bereits grundlegende Erfahrungen mit der Programmiersprache R haben (z.B. durch die Hands-on Session zu R Teil I). Die Teilnehmenden lernen in dieser Session wie sich in R unterschiedliche Visualisierungen in R gestalten lassen. Am Ende des Kurses sind die Teilnehmenden in der Lage, eigene Visualisierungen zu erstellen, anzupassen und zu exportieren.

  • Excel your Data: Datenorganisation und Qualitätssicherung in Spreadsheet-Tools

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:

    Tabellenkalkulationssoftware wie Excel oder LibreOffice Calc sind mächtige Werkzeuge der Datenverarbeitung und nützlich, wenn es darum geht, Daten zu verwalten und auszuwerten. Doch die Herausforderung liegt oft nicht nur in den Datenanalysen, sondern bereits darin Daten konsistent und fehlerfrei zu halten, insbesondere bei komplexen Projekten.

    In dieser Hands-on Session lernen Teilnehmende, wie sie mit Spreadsheet-Software (Excel/LibreOffice Calc) ihre Datenmanagement-Aufgaben effizient gestalten können. Wir zeigen, wie die Funktionen der Tools genutzt werden können, um die Dateneingabe zu optimieren und Fehler zu vermeiden. Zusätzlich stellen wir nützliche kleine Hacks vor, mit denen man sich die Verarbeitung der Daten leichter machen kann. Die Hands-on Session ist ideal für alle, die ihre Kenntnisse in Excel/LibreOffice Calc vertiefen möchten.

  • Generative AI 101: Wer, wie, was?

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:

    Die rasante Entwicklung generativer KI verändert alle Bereiche unserer Gesellschaft. Gerade an Hochschulen stellen sich dazu viele Fragen. Was müssen Studierende über diese Technologien, ihre Hintergründe und Anwendung lernen und in welchen Bereichen sollte generative KI im Studium (nicht) eingesetzt werden?

    In der Hands-on Session geben wir den Teilnehmenden einen Einblick in die technischen Hintergründe zu generativer KI und diskutieren dabei auch Grenzen der Systeme. Darüber hinaus werden wir potentielle Anwendungsszenarien im Studium sowie damit verbundene Regelungen an den Hochschulen diskutieren. Wir stellen in diesem Kontext den Service ChatAI zur Textgenerierung vor, welcher insbesondere durch seine leichte Bedienbarkeit und den starken Datenschutz gut nutzbar ist. Nach dem Kurs kennen Teilnehmende wichtige Grundlagen von generativer KI und können Anwendungsfälle sowie die damit verbundene Richtlinien und technische Grenzen identifizieren.

    Für die Teilnahme sind keine Vorkenntnisse erforderlich.

Sessions Summer Semester 2024

  • 03.05.2024, 12 Uhr — Lies, Damn Lies and Statistics: Kritischer Umgang mit Statistiken und KI im Alltag

    Datum:
    03.05.2024, 12 Uhr

    Ort:
    Carl-Zeiß-Straße 3, Seminarraum 121

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Daten und daraus gewonnene Statistiken können uns dabei helfen Situationen zu verstehen, Entwicklungen vorherzusagen und darauf basierend Entscheidungen zu treffen. Leider finden sich in unserem Alltag immer wieder Beispiele, die zeigen wie leicht fehlerhafte Statistiken uns in die Irre führen können.

    Auf Daten und Statistik basierende Tools im Bereich der künstlichen Intelligenz (z.B. Maschinelles Lernen) gewinnen immer mehr an Bedeutung und kommen auch in sensiblen Bereichen wie dem Rechts- und Bildungssystem oder der Medizin zum Einsatz. Doch obwohl oft angenommen wird, dass Daten und Algorithmen objektive Aussagen treffen können, spiegeln sie häufig nur bestehende Ungleichheiten, Vorurteile oder andere Probleme in den zugrundeliegenden Daten wider.

    Im Rahmen der Hands-on Session wollen wir anhand von realen Beispielfällen über Herausforderungen und Fallstricke bei Statistiken und algorithmenbasierten Entscheidungen aufzeigen. Wir werden dabei auf grundlegende technisch-methodische Aspekte, aber auch auf gesellschaftliche Konsequenzen eingehen.

  • 06.05.2024, 16 Uhr — Datenvisualisierung ohne Programmieren

    Datum:
    6. Mai 2024 16 Uhr

    Ort:
    Kursraum ThULB

    Verantwortliche/r:
    organisatorisch: Dr. Volker Schwartze (Data Literacy Projekt)
    Swantje Dogunke (ThULB)

    Zusammenfassung:
    Datenvisualisierungen sind ein wichtiger Bestandteil des wissenschaftlichen Arbeitens, egal ob als Teil der Erkundung von Daten oder als Mittel zur Kommunikation gewonnener Ergebnisse. Passende Visualisierungen zu erstellen, kann eine Herausforderung darstellen, sowohl bei der Konzeption als auch bei der Auswahl geeigneter Werkzeuge. 
    Die Hands-on Session gibt einen Überblick, wie man eine Datenvisualisierung planen kann, und stellt hilfreiche weiterführende Angebote vor. Es werden gezielt Werkzeuge zur Erstellung unterschiedlicher Visualisierungen vorgestellt, für die keine Programmierkenntnisse erforderlich sind. Die Session richtet sich insbesondere auch an Studierende aus dem Bereich der Geisteswissenschaften. 

  • 17.05.2024, 12 Uhr — Daten- und Projektmanagement mit der FSU-Cloud

    Datum:
    17.05.2024, 12 Uhr

    Ort:
    Seminarraum 208, Carl-Zeiß-Straße 3 

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Die angemessene Organisation von Daten und das Management von Projekten sind Herausforderungen, die sich in nahezu allen Arbeits- und Lebensbereichen finden lassen. Das kann im kleinen die eigene Arbeit an Seminar- oder Abschlussarbeiten sein oder auch ein kollaboratives Projekt im Rahmen von Seminaren oder im späteren Job.
    In der Hands-on Session stellen wir Grundlagen des Daten- und Projektmanagements mit der FSU-Cloud (Nextcloud) vor. Die Cloud ist für alle Studierenden an der Universität Jena frei nutzbar und bietet eine Vielzahl von Werkzeugen zur effektiven Ablage und Bearbeitung von Daten.
    Dabei geht es sowohl um die sichere Verwaltung und Organisation von Dateien als auch spezifische Möglichkeiten zur Arbeit in Projekten (z.B. Seminar- und Abschlussarbeiten, Berichte, Präsentationen). In diesem Zusammenhang werden Funktionen zur gemeinsamen Bearbeitung von Dateien sowie zur effektiven Organisation der Arbeiten im Team vorgestellt (bspw. Aufgaben, Kanban-Boards).

  • 22.05.2024, 16 Uhr — Keine Angst vor Schlangen: Eine kurze Einführung in die Programmiersprache Python

    Datum:
    22.05.2024, 16 Uhr

    Ort:
    Seminarraum 217, Ernst-Abbe-Platz 8 (MMZ)

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Programmiersprachen sind nur was für Spezialisten wie Informatiker oder Data Scientists und sind sehr schwer zu lernen? Aus unserer Sicht nicht.
    In der Hands-on Session stellen wir vor, wie sich die Programmiersprache Python als Werkezug für viele Aufgaben in der wissenschaftlichen (und nicht-wissenschaftlichen) Arbeit in unterschiedlichsten Fachbereichen einsetzen lässt. Mit viele verfügbaren Bibliotheken ist mit einigen Grundkenntnissen schon vieles machbar, von der Analyse von Zahlen, Bildern und Texten bis hin zur Erstellung von Visualisierungen.
    Teilnehmende haben die Möglichkeit selbst erste praktische Erfahrungen mit Python zu sammeln.
    Der Kurs richtet sich explizit an Studierende, die bisher noch keine (oder nur sehr wenig) Erfahrung mit Programmiersprachen haben.

  • 03.06.2024, 14 Uhr — Ordnung in Tabellen schaffen: Einführung in OpenRefine

    Datum:
    03.06.2024, 14 Uhr

    Ort:
    Windowspool 1 (Raum 3415), Ernst-Abbe-Platz 2 (4. OG)

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Egal in welchem Bereich man arbeitet, um die Arbeit mit Daten in Form von Tabellen kommt man nur selten herum. Obwohl tabellarische Daten für viele Anwendungsbereiche eine gut nutzbare Grundlage bieten, finden sich darin oft Fehler, z.B. wie Tippfehler, verrutschte Zeilen, falsche Formatierungen, doppelte Einträge etc. Außerdem will man ggf. nur Teile von Datensätzen verwenden und daher Daten ausfiltern oder das Format der Tabelle ändern. Gerade bei größeren Datensätzen, kann das Bereinigen solcher Fehler sehr aufwändig und mühselig sein sowie viel Zeit in Anspruch nehmen.
    Dabei kann spezifische Software wie OpenRefine helfen. In der Hands-On Session werden wir OpenRefine vorstellen und Teilnehmenden die Möglichkeit bieten, anhand von Beispieldatensätzen selbst Erfahrungen zur Anwendung der Software sammeln.

  • 07.06.2024, 8 Uhr — Einführung in die Programmiersprache R für Einsteiger

    Datum:
    07.06.2024, 8 Uhr

    Ort:
    SR 216 (PC-Pool), Ernst-Abbe-Platz 8 (MMZ)  

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:
    Dieser Einführungskurs in R richtet sich an Anfänger, die wenig oder keine Erfahrung mit der Programmiersprache R haben. Die Teilnehmer lernen die Grundlagen der R-Syntax, Datenstrukturen und Kontrollstrukturen sowie das Lesen und Schreiben von Daten in R. Zusätzlich können die Teilnehmer ein fortgeschrittenes Beispiel auswählen, das während des Kurses eingehender betrachtet wird. Am Ende des Kurses sollten die Teilnehmer eine solide Grundlage in der R-Programmierung haben und in der Lage sein, einfache Skripte zu schreiben, um Daten zu manipulieren und zu analysieren.

  • 07.06.2024, 12 Uhr — Datenethik: Konfliktfelder von Ethik und Informationstechnologie

    Datum:
    07.06.2024, 12 Uhr

    Ort:
    Seminarraum 121, Carl-Zeiß-Straße 3

    Verantwortliche/r:
    Dr. Volker Schwartze, organisatorisch (Data Literacy Projekt)

    Zusammenfassung:
    Die zunehmende Digitalisierung unserer Gesellschaft stellt nicht nur neue Anforderungen in Bezug auf digitale Kompetenzen, sondern auch neue gesellschaftliche Herausforderungen. Nicht selten gibt es dabei Konflikte zwischen ethischen Aspekten und der Entwicklung bzw. dem Einsatz von Informationstechnologien.
    Im Rahmen der Hands-on Session wollen wir anhand von Beiträgen aus den Gewissensbits External link ethische Konflikte im Bereich digitaler Technologien herausarbeiten und diskutieren. Dabei sollen insbesondere auch die verschiedenen Ebenen und Herausforderungen in Bezug auf mögliche Lösungen solcher Konflikte herausgestellt werden.

  • 10.06.2024, 14 Uhr — Dokumente effizienter formatieren: Einführung in LaTeX

    Datum:
    10.06.2024, 14 Uhr

    Ort:
    Windowspool 1 (Raum 3415), Ernst-Abbe-Platz 2 (4. OG)

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:
    Dieser LaTeX-Einführungskurs richtet sich an Anfänger, die noch keine Erfahrungen mit LaTeX Typesetting System haben. Die Teilnehmer lernen, wie sie mit LaTeX professionell aussehende Dokumente erstellen können, einschließlich der Formatierung von Text, der Erstellung von Tabellen und Abbildungen sowie der Handhabung von Referenzen und Zitaten. Der Kurs behandelt auch, wie man mit LaTeX mathematische Gleichungen und Formeln erstellt.
    Am Ende des Kurses sollten die Teilnehmer ein solides Verständnis der Grundlagen von LaTeX haben und in der Lage sein, ihre eigenen Dokumente zu erstellen.

Sessions Winter Semester 2023/24

  • Einen Blick hinter die Kulissen: Künstliche Intelligenz für Nicht-Informatiker:innen

    Datum:
    TBD

    Ort:
     

    Verantwortliche/r:
    Dr. Oliver Mothes (Thüringer Zentrum für Lernende Systeme und Robotik)
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Der Begriff Künstliche Intelligenz ist spätestens seit der Zugänglichmachung von ChatGPT im November letzten Jahres in aller Munde. Für die meisten ist KI eine Black-Box, deren Funktionsweise nur für Expert*innen wie Informatiker*innen verständlich ist.
    In dieser Hands-On Session wollen wir Nicht-Informatiker*innen die Chance geben selbst anhand einfacher Beispiele in das Thema einzusteigen und ein besseres Verständnis für die zugrundeliegenden Technologien zu entwickeln. Dabei greifen wir auf Software zurück, die auch ohne Vorkenntnisse im Bereich Informatik und Programmierung nutzbar sind.

  • Nicht nur für komplexe Datenbanken: SQLite als praktisches Tool für die Arbeit mit tabellarischen Daten in der Wissenschaft

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Datenbanken sind ein wichtiger Teil unseres digitalen Alltags und wir interagieren häufig mit ihnen ohne es zu merken. Die meisten beschäftigen sich primär aus Nutzer*innen-Sicht mit bestehenden Datenbanken und denken nur wenig darüber nach, wie diese auch für die effektivere Nutzung der eigenen Daten sinnvoll sein können.
    Dabei müssen es nicht immer riesige und komplexe Datensätze sein. Grundkenntnisse im Umgang mit Datenbanksprachen können auch bei der Arbeit mit weniger umfangreichen tabellarischen Daten sinnvoll sein, z.B. für das Abrufen, Kombinieren, Filtern oder Aggregieren von Daten. Viele dieser Aufgaben können so effektiver gestaltet werden als beispielsweise bei der Nutzung von Tabellenkalkulationsprogrammen (z.B. LibreOffice, Excel).
    In der Hands-On Session lernen Teilnehmende Grundlagen relationaler Datenbanken und Datenbankabfragesprachen am Beispiel von SQLite kennen. Anhand von Beispieldaten zeigen wir Anwendungsmöglichkeiten, die sich im Alltag ganz verschiedener Fach- und Arbeitsgebiete effektiv einsetzen lassen.    

  • Wie erschafft Technologie Kunstwerke?: Generative KI am Beispiel von textgenerierenden Systemen wie ChatGPT

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Oliver Mothes (Thüringer Zentrum für Lernende Systeme und Robotik)
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    "Entdecke in diesem 90-minütigen Workshop die aufregende Welt der generativen KI. Erfahre, wie KI-Systeme Kunst und Texte erzeugen können. Wir werden die Grundlagen generativer KI kennenlernen, die Funktionsweise von Textgenerierung erkunden und uns praktisch mit ChatGPT beschäftigen. Keine Vorkenntnisse erforderlich. Tauche ein in die Zukunft der kreativen Technologie!"  So beschreibt ChatGPT unsere Hands-On Session. Aber wie kann ein Computer solche Texte überhaupt erstellen? Genau das wollen wir in der Hands-On Session erläutern und auf Möglichkeiten sowie Grenzen solcher Systeme eingehen.

  • Einführung in die Programmiersprache R für Einsteiger

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:
    Dieser Einführungskurs in R richtet sich an Anfänger, die wenig oder keine Erfahrung mit der Programmiersprache R haben. Die Teilnehmer lernen die Grundlagen der R-Syntax, Datenstrukturen und Kontrollstrukturen sowie das Lesen und Schreiben von Daten in R. Zusätzlich können die Teilnehmer ein fortgeschrittenes Beispiel auswählen, das während des Kurses eingehender betrachtet wird. Am Ende des Kurses sollten die Teilnehmer eine solide Grundlage in der R-Programmierung haben und in der Lage sein, einfache Skripte zu schreiben, um Daten zu manipulieren und zu analysieren.

  • Dokumente effizienter formatieren: Einführung in LaTeX

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:
    Dieser LaTeX-Einführungskurs richtet sich an Anfänger, die noch keine Erfahrungen mit LaTeX Typesetting System haben. Die Teilnehmer lernen, wie sie mit LaTeX professionell aussehende Dokumente erstellen können, einschließlich der Formatierung von Text, der Erstellung von Tabellen und Abbildungen sowie der Handhabung von Referenzen und Zitaten. Der Kurs behandelt auch, wie man mit LaTeX mathematische Gleichungen und Formeln erstellt.
    Am Ende des Kurses sollten die Teilnehmer ein solides Verständnis der Grundlagen von LaTeX haben und in der Lage sein, ihre eigenen Dokumente zu erstellen.

  • Ordnung in Tabellen schaffen: Einführung in OpenRefine

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Egal in welchem Bereich man arbeitet, um die Arbeit mit Daten in Form von Tabellen kommt man nur selten herum. Obwohl tabellarische Daten für viele Anwendungsbereiche eine gut nutzbare Grundlage bieten, finden sich darin oft Fehler, z.B. wie Tippfehler, verrrutschte Zeilen, falsche Formatierungen, doppelte Einträge etc. Außerdem will man ggf. nur Teile von Datensätzen verwenden und daher Daten ausfiltern oder das Format der Tabelle ändern. Gerade bei größeren Datensätzen, kann das Bereinigen solcher Fehler sehr aufwändig und mühselig sein sowie viel Zeit in Anspruch nehmen.
    Dabei kann spezifische Software wie OpenRefine helfen. In der Hands-On Session werden wir OpenRefine vorstellen und Teilnehmenden die Möglichkeit bieten, anhand von Beispieldatensätzen selbst Erfahrungen zur Anwendung der Software sammeln.

  • Algorithmen, Proxy-Variablen, Feedback: Kritische Auseinandersetzung mit KI-Anwendungen

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Der Einsatz von Daten und Algorithmen zur Unterstützung von menschlichen Entscheidungsprozessen soll dazu beitragen, Prozesse zu beschleunigen und Entscheidungen objektiver zu machen. In vielen Bereichen sollen daher entsprechende Werkzeuge, wie zum Beispiel künstliche Intelligenz, entwickelt und eingesetzt werden. Das betrifft auch sensible Bereiche wie das Rechts- und Bildungssystem, öffentliche Verwaltungen oder die Medizin. Doch obwohl wir oft annehmen, dass Daten und Algorithmen objektive Aussagen treffen können, spiegeln beide häufig nur bestehende Ungleichheiten und Vorurteile von Menschen wieder oder verstärken diese sogar noch weiter. Zudem lässt sich nicht alles, was wir eigentlich untersuchen wollen auch wirklich in Form von messbaren Daten einfach auzeichnen.
    Im Rahmen der Hands-On-Sessions wollen wir anhand von realen Beispielfällen über Herausforderungen und Fallstricke diskutieren, deren man sich bei algorithmenbasierten Entscheidungsfindungen bewusst sein sollte, um entsprechende Ergebnisse kritisch hinterfragen und Handlungsoptionen beurteilen zu können. Dabei geht es auch um die Frage, welche gesellschaftlichen Konsequenzen sich aus dem Einsatz solcher Systeme ergeben können.

  • Lies, Damn Lies and Statistics: Kritischer Umgang mit Statistiken im Alltag

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Daten und daraus gewonnene Statistiken können uns dabei helfen Situationen zu verstehen, Entwicklungen vorherzusagen und darauf basierend Entscheidungen zu treffen. Leider finden sich in unserem Alltag immer wieder Beispiele, die zeigen wie leicht fehlerhafte Statistiken uns in die Irre führen können. Die Konsequenzen können unterschiedlich sein, von einer Kuriosität, die man belächeln kann bis hin zu schwerwiegenden Fehlentscheidungen mit nationalen oder globalen Folgen.
    Im Rahmen der Hands-On Session beschäftigen wir uns mit ausgewählten Beispielen aus der Reihe "Unstatistik des Monats" (https://www.rwi-essen.de/presse/wissenschaftskommunikation/unstatistik) und werden grundlegende Aspekte der kritischen Auseinandersetzung mit Statistiken, deren Interpretation und Kommunikation in den Medien diskutieren.

  • Strategien für das Sammeln und Bewerten von Informationen

    Datum:
    23.01.2024

    Ort:
    TBD

    Verantwortliche/r:
    Eugen Underberg (ThULB)

    Zusammenfassung:
    Daten und Informationen sind heutzutage in großen Mengen über verschiedene Plattformen verfügbar. Doch wie finde ich eigentlich genau die Informationen, die ich benötige? Und wie stelle ich sicher, dass sie vertrauenswürdig und von ausreichender Qualität sind?
    In der Hands-on Session werden Methoden zur Beschaffung von Informationen anhand der beiden fachübergreifenden Datenbanken Web of Science/Social Sciences Citation Index und Scopus vorgestellt. Beide Informationsressourcen bieten die Möglichkeit der Zitationsanalyse. Darüber hinaus werden wir uns mit weiteren Themen zur Informationsbeschaffung wie der Entwicklung einer Recherchestrategie, der Informationsbewertung sowie dem Einfluss von wissenschaftlichen Publikationen beschäftigen.

Topics Summer Semester 2023

  • Einen Blick hinter die Kulissen: Künstliche Intelligenz für Nicht-Informatiker:innen

    Datum:
    6. Juni 2023

    Ort:
    Ernst-Abbe-Platz 8 - SR 216 (PC-Pool) 

    Verantwortliche/r:
    Dr. Oliver Mothes (Thüringer Zentrum für Lernende Systeme und Robotik)
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Der Begriff Künstliche Intelligenz ist spätestens seit der Zugänglichmachung von ChatGPT im November letzten Jahres in aller Munde. Für die meisten ist KI eine Black-Box, deren Funktionsweise nur für Expert*innen wie Informatiker*innen verständlich ist.
    In dieser Hands-On-Session wollen wir auch Nicht-Informatiker*innen die Chance geben selbst anhand einfacher Beispiele in das Thema einzusteigen und ein besseres Verständnis für die zugrundeliegenden Technologien zu entwickeln. Dabei greifen wir auf die Werkzeuge zurück, die ohne Vorkenntnisse in Informatik und Programmierung nutzbar sind.

    Anmeldung:
    Über FriedolinExternal link (bevorzugt) oder E-Mail an dataliteracy@uni-jena.de

  • Ordnung in Tabellen schaffen: Einführung in OpenRefine

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Viele Daten werden in Form von Tabellen organisiert. Obwohl tabellarische Daten für viele Anwendungsbereiche eine gut nutzbare Grundlage bieten, finden sich darin oft Fehler, z.B. wie Tippfehler, verrrutschte Zeilen, falsche Formatierungen, doppelte Einträge etc. Außerdem wollen wir evtl. nur Teile von Datensätzen verwenden und daher Daten ausfiltern. 
    Gerade bei größeren Datensätzen, kann das Bereinigen solcher Fehler sehr aufwändig und mühselig sein sowie viel Zeit in Anspruch nehmen. Dabei kann spezifische Software wie OpenRefine helfen. In der Hands-On-Session werden wir OpenRefine vorstellen und Teilnehmenden die Möglichkeit bieten, anhand von Beispieldatensätzen selbst Erfahrungen zur Anwendung der Software sammeln.

  • Algorithmen, Proxys, Feedback: Kritische Auseinandersetzung mit KI-Anwendungen

    Datum:
    TBD

    Ort:
    TBD

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Der Einsatz von Daten und Algorithmen zur Unterstützung von menschlichen Entscheidungsprozessen soll dazu beitragen, Prozesse zu beschleunigen und Entscheidungen objektiver zu machen. In vielen Bereichen sollen daher entsprechende Werkzeuge, wie zum Beispiel künstliche Intelligenz, entwickelt und eingesetzt werden. Das betrifft auch sensible Bereiche wie das Rechts- und Bildungssystem, öffentliche Verwaltungen oder die Medizin. Doch obwohl wir oft annehmen, dass Daten und Algorithmen objektive Aussagen treffen können, spiegeln beide häufig nur bestehende Ungleichheiten und Vorurteile von Menschen wieder oder verstärken diese sogar noch weiter. Zudem lässt sich nicht alles, was wir eigentlich untersuchen wollen auch wirklich in Form von messbaren Daten einfach auzeichnen.
    Im Rahmen der Hands-On-Sessions wollen wir anhand von realen Beispielfällen über Herausforderungen und Fallstricke diskutieren, deren man sich bei algorithmenbasierten Entscheidungsfindungen bewusst sein sollte, um entsprechende Ergebnisse kritisch hinterfragen und Handlungsoptionen beurteilen zu können. Dabei geht es auch um die Frage, welche gesellschaftlichen Konsequenzen sich aus dem Einsatz solcher Systeme ergeben können.

  • Einführung in die Programmiersprache R für Einsteiger

    Datum:
    TBD

    Ort:
    TBD 

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:
    Dieser Einführungskurs in R richtet sich an Anfänger, die wenig oder keine Erfahrung mit der Programmiersprache R haben. Die Teilnehmer lernen die Grundlagen der R-Syntax, Datenstrukturen und Kontrollstrukturen sowie das Lesen und Schreiben von Daten in R. Zusätzlich können die Teilnehmer ein fortgeschrittenes Beispiel auswählen, das während des Kurses eingehender betrachtet wird. Am Ende des Kurses sollten die Teilnehmer eine solide Grundlage in der R-Programmierung haben und in der Lage sein, einfache Skripte zu schreiben, um Daten zu manipulieren und zu analysieren.

  • Notizen und Informationen besser strukturieren: Einführung in Markdown

    Datum:
    TBD

    Ort:
    TBD 

    Verantwortliche/r:
    Dr. Volker Schwartze (Data Literacy Projekt)

    Zusammenfassung:
    Es gibt viele unterschiedliche Möglichkeiten Notizen, Texte und Informationen zu verwalten. Bei persönlichen Notizen können das z.B. handgeschriebene Notizen, Text- oder Worddateien oder spezielle Formate wie One-Note-Dateien sein.
    Die unterschiedlichen Varianten haben dabei unterschiedliche Limitierungen, wie z.B. Optionen für die Formatierung, unzureichende Möglichkeit für die Zusammenarbeit, die Einbindung von Bildern oder die Notwendigkeit der Anschaffung kostenpflichtiger Software. Gerade wenn es um größere Mengen an Informationen geht, lassen sich diese zudem oft nur schwer gut strukturiert organisieren, wie man es beispielsweise in einem Wiki (wie Wikipedia) könnte.

    Hier kann die Auszeichnungssprache Markdown helfen, die kostenfrei und unabhängig von spezifischer Software verwendet werden kann, um Notizen und Informationen besser zu strukturieren. In der Hands-On-Session zeigen wir grundlegende Funktionen von Markdown, wobei die Teilnehmenden ein eigenes Cheat Sheet ("Spickzettel") mit Befehlen in Markdown schreiben werden. Zudem stellen wir die Software Obsidian vor, die in Verbinung mit grundlegenden Kenntnissen in Markdown das Anlegen eigener strukturierter Informationsspeicher ermöglicht. Für die Teilnahme sind keine speziellen Vorkenntnisse erforderlich.

  • Dokumente effizienter formatieren: Einführung in LaTeX

    Datum:
    TBD

    Ort:
    TBD 

    Verantwortliche/r:
    Dr. Martin Kerntopf (Data Literacy Projekt)

    Zusammenfassung:
    Dieser LaTeX-Einführungskurs richtet sich an Anfänger, die noch keine Erfahrungen mit LaTeX Typesetting System haben. Die Teilnehmer lernen, wie sie mit LaTeX professionell aussehende Dokumente erstellen können, einschließlich der Formatierung von Text, der Erstellung von Tabellen und Abbildungen sowie der Handhabung von Referenzen und Zitaten. Der Kurs behandelt auch, wie man mit LaTeX mathematische Gleichungen und Formeln erstellt. Am Ende des Kurses sollten die Teilnehmer ein solides Verständnis der Grundlagen von LaTeX haben und in der Lage sein, ihre eigenen Dokumente zu erstellen.

Past Lectures

  • Winter Semester 2022/23

    24.10.2022 - Themenblock 1: Einführung Data Literacy

    Data Literacy: Datenkompetenzen für Wissenschaft und Alltag

    Dr. Volker U. Schwartze
    Kompetenzzentrum Digitale Forschung, Friedrich-Schiller-Universität Jena

    Daten gelten als das „Öl des 21. Jahrhunderts“ und gewinnen gerade durch die zunehmende Digitalisierung der Gesellschaft immer mehr an Bedeutung. Daher sind Kompetenzen zum angemessenen Umgang mit Daten nicht nur eine wichtige Qualifikation für bestimmte Fachleute wie Data Scientists, sondern spielen in allen Fachdisziplinen eine wichtige Rolle. Aber auch außerhalb der Wissenschaft sind diese Kompetenzen von großer Bedeutung und im Berufsleben sowie für die gesellschaftliche Teilhabe unverzichtbar.

    Aber was sind eigentlich Daten und was verbirgt sich genau hinter dem Begriff Data Literacy? Welche Kompetenzen gehören zur Data Literacy und wann brauche ich sie in meinem Alltag? Diesen und weiteren grundlegenden Fragen zum Thema Data Literacy wollen wir in der Auftaktveranstaltung zur DaLiJe-Ringvorlesung nachgehen.

     

    07.11.2022 - Themenblock 2: Daten in Forschung und Gesellschaft

    Verwaltungsprozesse der Zukunft: Digitalisierung als Herausforderung und Chance

    Marianne Mauch
    Arbeitsgruppe offenes Design digitaler Verwaltungsarchitekturen, Heinz-Nixdorf-Professur für verteilte Informationssysteme, Friedrich-Schiller-Universität Jena

    Mit dem Onlinezugangsgesetz (OZG), das vor rund fünf Jahren in Kraft getreten ist, verpflichten sich Bund, Länder und Kommunen dazu, bis Ende 2022 alle Verwaltungsleistungen digital anzubieten. Bürgerinnen und Bürger sollen dann sämtliche Anträge online einreichen können. Doch es gibt noch viel zu tun – nicht nur um das Ziel bis Ende des Jahres tatsächlich zu erfüllen, sondern auch um Systeme aufzubauen, die langfristig schnell und unkompliziert gepflegt und bei Bedarf ausgebaut werden können. Doche welche Herausforderungen entstehen dabei und welche Dienste kann Künstliche Intelligenz (KI) bei dieser Umstruktu­rie­rung leisten?

     

    28.11.2022 - Themenblock 3: Sammlung und Erhebung von Daten

    Daten erheben in der Sprachforschung 

    Prof. Dr. Melanie Weirich
    Heisenberg Professur für Sprechwissenschaft und Phonetik, Friedrich-Schiller-Universität Jena

    Wie sammelt man Daten zu gesprochener Sprache? Muss man dazu ins Labor? Wie kann man Faktoren (wie z.B. Alter oder Geschlecht) erheben, die für die Unterschiede zwischen Sprechergruppen verantwortlich sind? Kann man auch Daten sammeln, die Auskunft über die Wahrnehmung des Gesagten oder auch die Einstellung zu sprachlicher Variation geben?
    In dieser Vorlesung werden verschiedene Erhebungsmethoden (im Labor, "auf der Straße" und auch online) sowohl sprachlicher Daten als auch personenbezogener Hintergrundinformationen (wie Alter, Geschlechteridentität, Herkunft oder auch Persönlichkeitseigenschaften) vorgestellt.

     

    05.12.2022 - Themenblock 4: Management von Daten

    Forschung mit Gesundheitsdaten – das Datenintegrationszentrum

    Datenintegrationszentrum
    Datenintegrationszentrum, Universitätsklinikum Jena

    Der Umgang mit Daten aus der Krankenversorgung stellt besondere Herausforderungen an deren Management, Schutz und Verarbeitung. Zu diesem Zweck entstehen seit 2018 an den deutschen Universitätskliniken Datenintegrationszentren (DIZ), deren Arbeit und Services am Beispiel des DIZ am Universitätsklinikum Jena vorgestellt werden.

     

    09.01.2023 - Themenblock 5: Auswertung von Daten

    Evolution als gemeinsamer Nenner - phylogenomische Auswertung von Bakterien, Viren und Sprachfamilien

    Dr. Denise Kühnert
    tide Forschungsgruppe, Max-Planck-Institut für Geoanthroplogie

    Phylogenomische Methoden basieren auf der Annahme, dass Bakterien, Viren, aber auch Sprachfamilien und viele andere Entitäten evolvieren und sich ihre Evolution über die Zeit anhand von Stammbäumen veranschaulichen lässt. Hier präsentiere ich Beispiele solcher "Phylogenien" und was wir von ihnen lernen können.

     

    23.01.2023 - Themenblock 6: Präsentation von Daten [Vortrag fällt aus]

    Hinweis: Diese Veranstaltung kann aus organisatorischen Gründen leider nicht wie geplant stattfinden.

    Daten aus Forschungsprojekten in die Gesellschaft kommunizieren

    Graduiertenakademie & Programmteilnehmer:innen „From Lab to Web“
    Graduiertenakademie, Friedrich-Schiller-Universität Jena

    Gerade in Pandemiezeiten ist es deutlich geworden, dass die Kommunikation wissenschaftlicher Ergebnisse in die Gesellschaft dringend notwendig ist. Auf diese Weise wird Wissen für alle zugänglich gemacht, Aufklärung geleistet und Desinformation verhindert. Das neue Programm der Graduierten-Akademie "Science Communication: From Lab to Web“ fördert Promovierende aus den MINT-Fächern der Universität Jena, die sich im Bereich Wissenschaftskommunikation mit eigenen Inhalten und Formaten etablieren möchten. Promovierende, die ins Programm aufgenommen wurden, werden vorstellen, wie sie mit Daten aus ihrem Promotionsprojekt im Bereich Wissenschaftskommunikation umgehen und diese in ihre Formate auf Social Media-Kanälen umsetzen.

     

    06.02.2023 - Themenblock 7: Rechtliche und ethische Aspekte beim Umgang mit Daten

    Leitlinien Guter Wissenschaftlicher Praxis im Forschungsalltag: Konfliktfelder und Fallstricke

    Dr. Andrea Kliewer
    Institut für Pharmakologie und Toxikologie, Universitätsklinikum Jena

    Die Richtlinien zur Sicherung der „Guten wissenschaftlichen Praxis“ sind eine wichtige Grundlage für die Integrität wissenschaftlicher Arbeit dar. In diesem Zusammenhang stellen sich in der Praxis viele Fragen, z.B.:

    Was genau zeichnet "gute" wissenschaftliche Arbeit aus?
    Was ist wissenschaftliches Fehlverhalten und wir kann damit umgegangen werden?
    Was ist bei wissenschaftlichen Publikationen und bei Autorenschaften zu beachten?

    Diesen und weiteren Fragen sollen im Rahmen des Vortrags betrachtet werden. Dabei werden die Grundlagen der Richtlinien zur Sicherung der „Guten wissenschaftlichen Praxis“ und Beispiele aus der Praxis vorgestellt.

  • Summer Semester 2022

    11.04.2022 - Themenblock 1: Einführung Data Literacy

    Data Literacy: Datenkompetenzen für Wissenschaft und Alltag

    Dr. Volker U. Schwartze & PD Dr. Barbara Aehnlich
    Kompetenzzentrum Digitale Forschung, Friedrich-Schiller-Universität Jena

    Daten gelten als das „Öl des 21. Jahrhunderts“ und gewinnen gerade durch die zunehmende Digitalisierung der Gesellschaft immer mehr an Bedeutung. Daher sind Kompetenzen zum angemessenen Umgang mit Daten nicht nur eine wichtige Qualifikation für bestimmte Fachleute wie Data Scientists, sondern spielen in allen Fachdisziplinen eine wichtige Rolle. Aber auch außerhalb der Wissenschaft sind diese Kompetenzen von großer Bedeutung und im Berufsleben sowie für die gesellschaftliche Teilhabe unverzichtbar.

    Aber was sind eigentlich Daten und was verbirgt sich genau hinter dem Begriff Data Literacy? Welche Kompetenzen gehören zur Data Literacy und wann brauche ich sie in meinem Alltag? Diesen und weiteren grundlegenden Fragen zum Thema Data Literacy wollen wir in der Auftaktveranstaltung zur DaLiJe-Ringvorlesung nachgehen.


    02.05.2022 - Themenblock 2: Daten in Forschung und Gesellschaft

    Wissenschaftshistorische Betrachtung zur Bedeutung datengetriebener Forschung in Wissenschaft und Gesellschaft

    Prof. Dr. Christina Brandt
    Lehrstuhl für Geschichte und Philosophie der Naturwissenschaften mit Schwerpunkt Lebenswissenschaften, Ernst-Haeckel-Haus, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena

    Der Umgang mit „Daten“ und „Informationen“ ist heutzutage in Forschung und Gesellschaft grundlegend. Für manche ist sogar eine neue Epoche der „data-driven sciences“ angebrochen: eine Wissenschaft, die auf dem Wege sei, eine hypothesengetriebene Forschung abzulösen. Die Vorlesung geht aus wissenschaftshistorischer Perspektive der Frage nach, wie diese Zentralität von Daten in Forschung und Gesellschaft eingeordnet und kritisch reflektiert werden kann. Handelt es sich bei den data-driven sciences um ein historisch neuartiges Phänomen? Welche Entwicklungen haben den neuen datengetriebenen Forschungsstil befördert - und welche theoretischen und praktischen Konsequenzen gehen damit für unser Verständnis von Wissenschaft und Gesellschaft einher? Die Vorlesung vermittelt Einblicke in Forschungsergebnisse aus der Wissenschaftsgeschichte und der philosophischen Wissenschaftsforschung, die sich in den letzten Jahren zunehmend mit diesen grundlegenden Fragen beschäftigt haben.


    16.05.2022 - Themenblock 4: Management von Daten

    NFDI4Chem - Die Nationale Forschungsdateninfrastruktur für die Chemie

    Prof. Dr. Christoph Steinbeck
    Professur für Analytische Chemie, Chemoinformatik und Chemometrie, Institut für analytische und anorganische Chemie, Friedrich-Schiller-Universität Jena

    Der Zyklus zum Management von Forschungsdaten in den Naturwissenschaften erfordert nahtlose technische Unterstützung von der frühen Datenerzeugung im Labor oder im Feld bis hin zur Ablage in offenen Repositorien und der dadurch möglichen Nachnutzung.
    In NFDI4Chem bauen wir eine Infrastruktur, die eine solche nahtlose Unterstützung leisten wird. In diesem Vortrag erläutern wir die dazu notwendigen Komponenten und zeigen Fallbeispiele für gutes Forschungsdatenmanagement.


    30.05.2022 - Themenblock 3: Sammlung und Erhebung von Daten

    Citizen Science: Chancen und Herausforderungen der Datengewinnung durch Bürger

    Dr. Friederike Klan und apl. Prof. Dr. Christian Thiel
    Abteilung Datengewinnung und -mobilisierung, Institut für Datenwissenschaften, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

    Citizen Science-Daten bieten für die datengetriebene Forschung aber auch in Bezug auf datenbasierte Innovationen ein erhebliches Potential. Anhand von Praxisbeispielen aus aktuellen Citizen-Science-Projekten beleuchten wir für welche Zielstellungen bürgerwissenschaftliche Ansätze zur Datengewinnung gegenüber traditionellen Methoden der Datenerhebung einen Mehrwert bieten, aber auch welche Grenzen und Herausforderungen sich dabei, insbesondere in Bezug auf die Datenqualität, ergeben. Wir zeigen Best Practice-Ansätze zur Adressierung dieser Herausforderungen auf und skizzieren wichtige Handlungsbedarfe im Themenfeld "Qualitätssicherung und Management von Citizen Science-Daten", die im Rahmen eines offenen Entstehungsprozesses durch Citizen Science-Community und Öffentlichkeit identifiziert und in Kürze im Weißbuch Citizen Science Strategie 2030External link veröffentlicht werden.


    13.06.2022 - Themenblock 5: Auswertung von Daten

    Vom Rohstoff zum wertvollen Gut: Mit (künstlicher) Intelligenz von Daten zu Erkenntnissen

    Oliver Mothes
    Thüringer Zentrum für Lernende Systeme und Robotik

    Oft hört man den Spruch: "Daten sind das neue Öl". Aber genau wie beim Öl, sind Daten nur wertvoll, wenn diese analysiert, ausgewertet und anschließend interpretiert werden können, um daraus eine nutzbringende Erkenntnis zu gewinnen. In diesem Zusammenhang wird heutzutage der Begriff künstliche Intelligenz (KI) immer mehr diskutiert.
    Da Methoden der künstlichen Intelligenz aus Daten lernen können, soll in der Vorlesung der Begriff KI eingeführt und anhand von praktischen Beispielen Ansätze des maschinellen Lernens vermittelt werden. Dabei sollen auch verschiedene „Fallstricke“ bei der Analyse vorgestellt werden, die die Verwertbarkeit gewonnener Erkenntnisse erschweren können.


    27.06.2022 - Themenblock 6: Präsentation von Daten

    Zwei mal drei macht vier, widewidewitt und drei macht neune - Motivierter Umgang mit Daten und Evidenz

    Prof. Dr. Tobias Rothmund
    Professur Kommunikations- und Medienpsychologie, Institut für Kommunikationswissenschaft, Fakultät für Sozial- und Verhaltenswissenschaft, Friedrich-Schiller-Universität Jena

    Im Umgang mit Daten und Evidenz agieren Menschen nicht wie Computer. Stattdessen beeinflussen Ziele, Werte, Ideologien und Emotionen die individuelle Auswahl, Verarbeitung und Memorieren von Informationen. Wir sprechen in diesem Zusammenhang auch von motivierter Informationsverarbeitung. Im Vortrag geht es um die zugrundeliegenden psychologischen Prozesse, die Funktionalität dieser Prozesse, situationale Einflussfaktoren und Persönlichkeitsunterschiede in der Neigung zu einem motivierten Umgang mit Evidenz.


    04.07.2022 - Themenblock 7: Rechtliche und ethische Aspekte beim Umgang mit Daten

    Ethische und methodische Aspekte der Forschung am Menschen in der Medizin

    Prof. Dr. André Scherag & Prof. Dr. Peter Schlattmann
    Institut für Medizinische Statistik, Informatik und Datenwissenschaften, Universitätsklinikum Jena

    Forschung an und mit Menschen unterliegt besonderen Anforderungen, die in Deklarationen, Richtlinien oder Gesetzen konkretisiert sind. Wenn immer wieder die Forderung kommt, Daten zu veröffentlichen, so ist dies für z. B. Gesundheitsdaten nicht oder nicht einfach möglich. Wir wollen darstellen, welche Anforderungen hierbei berücksichtigt werde müssen, wie Ethikkommissionen in Deutschland arbeiten und welche Rolle dabei der Datenschutz hat. Anhand von konkreten Forschungsbeispielen wollen wir aufzeigen, wie klassisch und in Zukunft klinische Forschung – also Forschung an Proband:innen und Patient:innen – erfolgen kann.

  • Winter Semester 2021/ 2022

    25.10.2021 - Themenblock 1: Einführung Data Literacy

    Data Literacy: Datenkompetenzen für Wissenschaft und Alltag

    Dr. Volker U. Schwartze & PD Dr. Barbara Aehnlich
    Kompetenzzentrum Digitale Forschung, Friedrich-Schiller-Universität Jena

    Daten gelten als das „Öl des 21. Jahrhunderts“ und gewinnen gerade durch die zunehmende Digitalisierung der Gesellschaft immer mehr an Bedeutung. Daher sind Kompetenzen zum angemessenen Umgang mit Daten nicht nur eine wichtige Qualifikation für bestimmte Fachleute wie Data Scientists, sondern spielen in allen Fachdisziplinen eine wichtige Rolle. Aber auch außerhalb der Wissenschaft sind diese Kompetenzen von großer Bedeutung und im Berufsleben sowie für die gesellschaftliche Teilhabe unverzichtbar.

    Aber was sind eigentlich Daten und was verbirgt sich genau hinter dem Begriff Data Literacy? Welche Kompetenzen gehören zur Data Literacy und wann brauche ich sie in meinem Alltag? Diesen und weiteren grundlegenden Fragen zum Thema Data Literacy wollen wir in der Auftaktveranstaltung zur DaLiJe-Ringvorlesung nachgehen.


    08.11.2021 - Themenblock 2: Daten in Forschung und Gesellschaft

    Geographische Datenwissenschaften: Potenziale und Herausforderungen neuartiger Daten und Modelle im Kontext der Naturgefahrenforschung

    Prof. Dr. Alexander Brenning
    Lehrstuhl Geoinformatik, Institut für Geographie, Friedrich-Schiller-Universität Jena

    Mit der zunehmenden Verfügbarkeit von Geodaten und innovativer Datenanalysewerkzeuge unterliegt die raumbezogene Forschung und berufliche Praxis einer Transformation, welche sowohl Potenziale als auch Herausforderungen mit sich bringt. Diese Vorlesung soll anhand von Beispielen der Naturgefahrenforschung (1) die Potenziale und Risiken neuartiger Arten von Geodaten, (2) Herausforderungen für reproduzierbare, offene Wissenschaft, und (3) Potenziale und Grenzen von Verfahren des maschinellen Lernens für geographische Fragestellungen darstellen.


    22.11.2021 - Themenblock 3: Sammlung und Erhebung von Daten

    Digitales Kulturerbe – Einblicke in die Digitalisierung der Thüringer Universitäts- und Landesbibliothek und Szenarien zur wissenschaftlichen Nachnutzung

    Petra Kunze & Swantje Dogunke
    Thüringer Universitäts- und Landesbiobliothek Jena

    Die Digitalisierung des Kulturerbes an Bibliotheken, Museen und Archiven blickt bereits auf eine eigene Geschichte zurück: Während zu Beginn vor allem die bestandsschonende Sicherung und schnelle Bereitstellung stand, kamen neue Herausforderungen wie z.B. die digitale Langzeitverfügbarkeit oder Berücksichtigung fachwissenschaftlicher Anforderung zur Nutzung der Daten hinzu. Im Vortrag werden Digitalisierungsprojekte und Datenbestände vorgestellt und Nutzungsszenarien aus geistes- und kulturwissenschaftlicher Perspektive skizziert.


    08.12.2021 - Themenblock 4: Management von Daten

    Ameise, Buche, CH4 – Einblicke in das ABC des Datenmanagements von Biodiversitätsdaten

    Dr. Cornelia Fürstenau und Prof. Dr. Birgitta König-Ries
    Heinz-Nixdorf-Professur für verteilte Informationssysteme, Institut für Informatik, Friedrich-Schiller-Universität Jena

    Seit nunmehr 15 Jahren untersuchen im Rahmen des Verbundprojektes Biodiversitäts-ExploratorienExternal link (ein von der DFG gefördertes Infrastruktur-Schwerpunktprogramm) Forschende verschiedener Wissenschaftsdiziplinen auf 300 Versuchsflächen im Wald und Grünland vielfältige Aspekten der Biodiversität. Die zentrale Sicherung der Forschungsdaten sowie der Datenaustausch zwischen den Forschungsgruppen war und ist ein Kernaspekt des Verbundprojektes. Ermöglicht wird dies durch das federführend in Jena entwickelte Datenmanagementsystem BEXIS2External link.

    Begleiten Sie uns in das Universum der Biodiversitätsdaten – Langzeitmonitoring von Vegetation und Bodennährstoffen, mikrobiologische Untersuchungen, Drohnenbefliegungen und viele weitere Studien. Anhand kleiner Einblicke in die Arbeit des Datenmanagementteams erfahren Sie, wie die  DatenmanagementsoftwareExternal link der Exploratorien und das Team Forschende beim Datenmanagement unterstützen und welche Hürden bei der Datensicherung  und -nachnutzung auftreten können.


    15.12.2021 - Themenblock 5: Auswertung von Daten

    Fallstricke und andere Pannen bei der Datenauswertung

    Prof. Dr. Tobias Koch
    Professur für Psychologische Methodenlehre, Institut für Psychologie, Friedrich-Schiller-Universität Jena

    „Glaube keiner Statistik, die du nicht selbst gefälscht hast“, sagt bekanntermaßen der Volksmund. Obwohl es richtig ist, dass man mit einer geschickten Präsentation von statistischen Ergebnissen eine gewisse Interpretation der Daten nahelegen kann, passiert es in der Praxis doch häufiger, dass viele Fehler ungewollt bei der Datenauswertung passieren. Häufig scheint die gewählte Auswertungsmethode oder -strategie sogar intuitiv plausibel, so dass gravierende Fehler unbemerkt bleiben. Unter Umständen gibt es auch mehrere statistische Verfahren oder Modelle, die anscheinend gleichermaßen zur Datenauswertung genutzt werden können. In der Vorlesung sollen anhand von praktischen Beispielen einige Fallstricke, Paradoxien, und andere Probleme bei der Datenauswertung illustriert werden und mögliche Lösungswege aufgezeigt werden. Um diese und ähnliche Fehler in der Praxis zu vermeiden, sind gerade fundierte statistische Kenntnisse und Kompetenzen notwendig.


    10.01.2022 - Themenblock 6: Präsentation von Daten

    Einsatz digitaler 3D-Rekonstruktionsmethoden in den Visual Humanities und der Lehre

    J.Prof. Dr. Sander Münster
    Juniorprofessur für Digital Humanities, Philosophische Fakultät, Friedrich-Schiller-Universität Jena

    Die Visual Digital Humanities umfassen ein breites Spektrum an wissenschaftlichen Herangehensweisen, die sich mit der Untersuchung komplexer visueller Informationen zur Beantwortung geisteswissenschaftlicher Fragestellungen beschäftigen. Dazu werden verschiedene digitale Werkzeuge und Methoden wie zum Beispiel die digitale 3D-Rekonstruktion angewendet. Die technologischen Hintergründe, Möglichkeiten für Projekte und methodischen Abwägungen für die Anwendung werden in der Literatur viel diskutiert. Trotzdem ist es immer noch eine Herausforderung, diese Methoden in der wissenschaftlichen Gemeinschaft zu verbreiten und als Teil der digitalen Geistes- und Kulturwissenschaften zu etablieren.

    Im Vortrag werden aktuelle Herausforderungen, Entwicklungen und Forschungsaktivitäten zur 3D-Rekonstruktion auf internationaler Ebene vorgestellt. Außerdem werden Ergebnisse und wissenschaftliche Gesichtspunkte aus Projekten am Lehrstuhl beschrieben.


    24.01.2022 - Themenblock 7: Rechtliche und ethische Aspekte beim Umgang mit Daten

    Daten und Datenzuordnung im Recht

    Prof. Dr. Christian Alexander
    Lehrstuhl für Bürgerliches Recht, Wirtschaftsrecht und Medienrecht, Friedrich-Schiller-Universität Jena

    Daten bilden den Gegenstand zahlreicher gesetzlicher Regelungen. Allerdings ist schon der Begriff „Daten“ aus rechtlicher Sicht keineswegs eindeutig. Weiterhin lassen sich Daten vielfach nicht in die herkömmlichen Kategorien des Rechts einordnen. Der Vortrag gibt einen ersten Einblick in die vielfältigen Rechtsprobleme und behandelt unter anderem die folgenden Fragen: Gibt es Eigentum und Besitz an Daten? Wem gehören Daten? Welche Rechte und Rechtsverhältnisse können in Bezug auf Daten bestehen? Kann man Daten vererben?